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ABSTRACT  

Capillarisation plays a key role in the growth of the developing heart. We therefore 

hypothesised that impaired heart development following intrauterine growth restriction 

(IUGR) may arise from inadequate myocardial capillary growth. The aims of the study were 

to examine the effect of IUGR on the growth and diffusion radius of intramyocardial 

capillaries in rats at postnatal day 1.  

Uteroplacental insufficiency was induced in rats in late gestation (E18, term=E22) by 

bilateral uterine artery and vein ligation (Restricted offspring n=12; 6 males and 6 females); 

offspring from sham-operated dams were used as Controls (n=10; 5 males and 5 females). At 

postnatal day 1, the hearts were immersion-fixed and heart volume, capillary length density, 

capillary diffusion radius and total capillary length were stereologically determined.  

Restricted offspring were significantly smaller at birth, with a concomitant reduction 

in heart volume and total myocardial capillary length compared to Controls. Capillary growth 

was not impaired relative to heart size, with no significant differences in capillary length 

density or diffusion radius in the myocardium of Restricted and Control offspring. There 

were no sex differences in any of the parameters examined. 

In conclusion, there was no evidence to indicate that microvascular development is 

compromised in the heart of IUGR offspring at one day after birth. Total myocardial capillary 

length, however, was significantly reduced in the growth restricted offspring and further 
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longitudinal studies are required to elucidate the long-term impact, particularly following 

hypertrophic cardiac growth.  

 

Key words: angiogenesis, heart development, fetal growth restriction, organ size, 

cardiovascular disease.   

INTRODUCTION 

Many epidemiological studies have demonstrated a link between low birth weight and 

an increased risk of ischemic heart disease later in life (Barker et al., 1989; Eriksson et al., 

1999; Huxley et al., 2007; Andersen et al., 2010) The underlying mechanisms, however, are 

poorly understood. Low birth weight (< 2,500 g) affects approximately 15% of newborn 

infants worldwide (United Nations Children’s Fund and World Health Organization, 2004), 

and in term-born infants is the consequence of intrauterine growth restriction (IUGR). IUGR 

results from a reduced oxygen and nutrient supply to the developing fetus, for which there are 

numerous causes including maternal undernutrition and impaired placental function 

(Nardozza et al., 2017). Late gestational uteroplacental insufficiency is the leading cause of 

IUGR in developed countries (Henriksen and Clausen, 2002; Resnik, 2002). 

Cardiac growth, and ultimately the size of the heart in the developing fetus, is the 

result of coordinated growth of both the cardiomyocytes and the coronary vasculature and is 

therefore dependent on angiogenesis (Tomanek et al., 1999; Tirziu et al., 2007). Conversely, 

inadequate growth of the coronary vasculature can adversely impact blood supply to the 

myocardium and affect cardiac growth (Shiojima et al., 2005; Rhee et al., 2018). Hence, the 
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reported reduction in the complement of cardiomyocytes in the hearts of IUGR offspring 

(Corstius et al., 2005; Black et al., 2012; Botting et al., 2014) may be the consequence of 

attenuated myocardial capillary growth. In this regard, capillary rarefaction (reduced density 

of capillaries) has previously been described in a number of vascular beds (including the 

heart) in experimental studies of fetal and newborn IUGR offspring (Boujendar et al., 2003; 

Khorram et al., 2007; Rozance et al., 2011; Liu et al., 2014; Rozance et al., 2015; Schipke et 

al., 2017). In postnatal life, the increased oxygen requirement of cardiac muscle, particularly 

if cardiac hypertrophy develops, requires the tissue to be highly vascularised (Oka et al., 

2014), with endothelial cells (comprising the capillaries) the major non-muscle cellular 

constituent of the heart (Pinto et al., 2016). Therefore, if myocardial capillary rarefaction is 

present following IUGR this has the potential to contribute to the long-term vulnerability to 

coronary ischemia, especially given that the capacity for cardiac angiogenesis is substantially 

diminished in adulthood (Weinsaft and Edelberg, 2001).  

To date, the findings of previous studies examining the impact of IUGR on 

myocardial capillarisation at the beginning of life are conflicting. In a sheep uterine 

carunculectomy model, increased capillary density was reported in the right ventricle of 

growth restricted fetal lambs (mixed sex; left ventricle not assessed) (Botting et al., 2014), 

whereas at 3 weeks of age a significant reduction in total capillary length in the left ventricle 

was observed (mixed sex; right ventricle not assessed, and capillary density was not reported) 

(Wang et al., 2015). In newborn male rat pups exposed to maternal protein restriction 

throughout gestation, there was no effect on myocardial capillary density (Menendez-Castro 

et al., 2014). Most recently, however, rabbit fetuses (of mixed sex) affected by late-gestation 
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uteroplacental insufficiency were found to exhibit capillary rarefaction in the left ventricle, 

but not in the right ventricle (Schipke et al., 2017). Differences in species and the model of 

IUGR likely contribute to some of these differences in findings.  

To explore this further, in this study we utilised a rat model (where the spatial and 

temporal development of the coronary vasculature is well-characterised (Ratajska and Fiejka, 

1999; Ratajska et al., 2003)) to examine the effect of uteroplacental insufficiency, that was 

induced during late gestation (at E18, term=E22 ), on myocardial capillarisation. This is a 

critical period of myocardial capillary development in the rat, where following connection 

with the systemic circulation at E16, the capillary network develops in utero from a thin 

disorganised layer to a highly organised microvascular network extending through the full 

thickness of the developing myocardium (Ratajska et al., 2003). In our study, IUGR was 

induced in rats by bilateral uterine vessel ligation and the hearts of both male and female 

offspring were analysed, as it is now well-recognised that there is sexual dimorphism in the 

programming effects of growth restriction on the cardiovascular system in animal studies 

(Ojeda et al., 2007a; Ojeda et al., 2007b; Wlodek et al., 2007; Wlodek et al., 2008; Moritz et 

al., 2009; Wadley et al., 2010; Wadley et al., 2013; Gallo et al., 2014; Intapad et al., 2014; 

Cheong et al., 2016), and in some human studies (Huxley et al., 2007; Dasinger and 

Alexander, 2016) . 

 

 

MATERIALS AND METHODS 
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Animal studies and the induction of growth restriction 

All animal experiments were approved by The University of Melbourne 

Pharmacology, Physiology, Biochemistry and Molecular Biology and Bio21 Institute Animal 

Ethics Committee (0004138), and the treatment and care of the animals adhered to the 

Australian code for the care and use of animals for scientific purposes. Wistar-Kyoto rats 

were housed in a temperature-controlled environment with a 12:12h light-dark cycle, and 

received standard food pellets and water ad libitum. Uteroplacental insufficiency (Restricted) 

was induced in pregnant dams (9-13 weeks of age) by bilateral uterine artery and vein 

ligation at day 18 of gestation (term is 22 days), as previously described (Wlodek et al., 2005; 

Wlodek et al., 2008; Moritz et al., 2009). Briefly, rats were anaesthetised (for a duration of 40 

min) with an intravenous injection of 50mg/kg ketamine (Parnell Laboratories, NSW, 

Australia) and 10 mg/kg Ilium Xylazil-20 (Troy Laboratories, Smithfield, NSW, Australia). 

Under aseptic conditions, a midline abdominal incision was made to expose the cervical end 

of the uterus, and the left and right uterine vessels were ligated (surgery duration of 

approximately 10 min). Sham-surgeries were conducted in the dams of the Control group. 

The Restricted offspring (n = 12; 6 males and 6 females) and Control offspring (n = 10; 5 

males and 5 females) were spontaneously delivered at term (day 22), then were weighed and 

humanely killed the day after birth (postnatal day 1, PN1). Only 1 male pup and 1 female pup 

(randomly selected) were analysed from each litter; sex was determined by visual 

examination of the anogenital distance. At necropsy, the hearts were excised and immersion-

fixed in 10% buffered formalin. Prior to analysis, large vessels were removed and the hearts 

were weighed. Researchers were blinded to the experimental grouping of the animals for all 
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subsequent analyses.  

 

Assessment of heart volume 

Due to the anisotropic nature of the myocardial capillaries, the hearts were each cut in 

half according to Systematic Version 1 of the Orientator method (Mattfeldt et al., 1990), thus 

generating isotropic sections of the myocardial vasculature. The tissue was then processed 

and embedded in paraffin, with both pieces of each heart embedded in the same block. When 

embedding the tissue, the angled cut surfaces were carefully positioned so that they were 

flush with the top of the blocks. Blocks were serially sectioned at 5 µm, and commencing 

with a random number between 1 and 10, every 10th and 11th sections were collected.  

Every 10th section from each heart was stained with haematoxylin. Images of the 

haematoxylin-stained heart sections were acquired using ImagePro Plus software (version 6.2; 

Media Cybernetics, Rockville, MD, USA); an orthogonal grid was superimposed over the 

images, and the number of intersecting grid points overlaying heart tissue were counted. 

Heart wall volume (Vheart) was then calculated using the Cavalieri principle (Gundersen and 

Jensen, 1987):  

𝑉 ℎ𝑒𝑎𝑟𝑡(𝑚𝑚3) =  1
𝐹1� ×  𝑇 ×  𝑎(𝑝)  ×  𝑃𝑡𝑖𝑠𝑠𝑢𝑒 

Where F1 is the sampling fraction (1/10) as every 10th section was analysed; T is the 

section thickness (0.005 mm), a(p) is the area associated with each grid point on the 

orthogonal grid, and Ptissue is the total number of counted grid points overlaying the heart wall.  
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Assessment of cardiac capillarisation 

Myocardial capillaries were fluorescently labelled in every 30th section of heart 

(beginning from the 11th section) with isolectin Griffonia simplicifolia-IB4 (GS-IB4). 

Sections underwent heat-mediated antigen retrieval in Tris-EDTA buffer and blocking in 

CAS-Block (Life Technologies, Frederick, MD, USA), prior to incubation for 1 hour at room 

temperature with Alexa Fluor 568-conjugated isolectin GS-IB4 at a 1:50 dilution (I21412; 

Molecular Probes, Life Technologies, Eugene, OR, USA). Stained sections were viewed 

using a 40x lens, and were systematically sampled in the X and Y directions at a step length 

of 445 µm. At each field of view (18 – 28 fields of view per section) images were acquired 

using cellSens Entry software (version 1.15; Olympus Corporation, Tokyo, Japan). An 

orthogonal grid within an unbiased counting frame was superimposed over each image, and 

the number of intersecting grid points overlaying the myocardium (Ptissue), and the number of 

capillary profiles within the counting frame (Q-), were counted (Figure 1). Capillary length 

density (Lvcap), the length of capillaries per unit volume of heart wall, was then calculated 

using the following formula (Mattfeldt et al., 1990; Lim et al., 2006):  

𝐿𝑣𝑐𝑎𝑝 �𝑚𝑚 𝑚𝑚3� � =
(2 ×  𝑄−)

𝑃𝑡𝑖𝑠𝑠𝑢𝑒  ×  𝑎(𝑝) 

To determine total capillary length per heart, capillary length density (Lvcap) was 

multiplied by heart wall volume (Vheart). Capillary diffusion radius (r), a measure of average 

maximal diffusion distance from capillary to tissue, was then calculated using the following 

formula (Lim et al., 2006; Tang et al., 2009): 
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𝑟 (𝑚𝑚) = �
1

𝜋 ×  𝐿𝑣𝑐𝑎𝑝
 

 

Statistical analysis 

Statistical analyses were performed using Graphpad Prism (version 7.02; Graphpad 

Software Inc, La Jolla CA, USA). Litter size was analysed using an unpaired two-tailed 

Student’s t test. All other data were analysed using a two-way analysis of variance (ANOVA), 

with restriction (pRest), sex (pSex) and their interaction (pRest*Sex) as factors; this was followed 

by a Tukey’s post-hoc test. Data are reported as the mean ± the standard error of the mean 

(SEM). Statistical significance was accepted at p < 0.05. It is to be noted that due to a 

technical error during sectioning, one of the female controls was not included in the analysis 

of heart volume and total capillary length. 

 

 

RESULTS 

Litter and offspring size at birth  

Litter size at birth for the Restricted litters with maternal bilateral uterine vessel ligation was 

significantly less than in the sham-operated Controls (Table 1). Restricted pups were 

significantly smaller than Controls (Table 1), with a reduction in both body weight (p = 

0.0002) and crown rump length (p = 0.0008) at PN1. There were no differences between the 

sexes in body weight or crown rump length, and no significant interaction effect between sex 
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and growth restriction. 

 

Heart weight and heart wall volume 

In accordance with the differences in body weight and CRL, there was a significant reduction 

in both heart weight (Table 1) and heart wall volume (Figure 2) in the Restricted offspring 

compared to Controls. The reduction in heart weight and heart wall volume was proportional 

to the decrease in body size in the Restricted group, with no significant differences in heart 

weight (Table 1) or heart wall volume (Figure 2) between the groups when adjusted for body 

weight. There were no differences between the sexes in relation to absolute or relative heart 

weight (Table 1) or heart wall volume (Figure 2). 

 

Myocardial capillarisation 

Capillary diffusion radius and length density of the myocardial capillaries in the Restricted 

and Control offspring are shown in Figure 3A and 3B, respectively; total capillary length per 

heart is shown in Figure 3C. There were no significant differences in the length density or in 

the diffusion radius of the capillaries in the myocardium of the Restricted and Control 

offspring; however, the overall total capillary length per heart was significantly reduced (p = 

0.002) in the Restricted group. The sex of the offspring had no effect on myocardial 

capillarisation, and there was no difference between the sexes in myocardial capillarisation 

following uteroplacental insufficiency. 
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DISCUSSION 

In this study there was no evidence of impaired capillarisation of the myocardium 

after birth in growth restricted rat offspring following the induction of uteroplacental 

insufficiency in late gestation, with the length density and diffusion radius of myocardial 

capillaries not different to Control offspring. There was, however, a significant reduction in 

the total length of myocardial capillaries in the Restricted offspring, given that they had 

proportionally smaller hearts (likely due to a reduction in cardiomyocyte endowment (Black 

et al., 2012)). Although it is known that the early life environment can lead to different 

cardiovascular programming effects in males and females (Huxley et al., 2007; Ojeda et al., 

2007a; Ojeda et al., 2007b; Wlodek et al., 2007; Wlodek et al., 2008; Moritz et al., 2009; 

Wadley et al., 2010; Wadley et al., 2013; Gallo et al., 2014; Intapad et al., 2014; Cheong et 

al., 2016; Dasinger and Alexander, 2016), in this study we found no differences between 

sexes in any of the experimental parameters examined.  

Prior to the commencement of this study, reduced vascular endothelial growth factor 

expression and/or reduced capillary growth had been described in a number of major organs 

in association with growth restriction in utero (Boujendar et al., 2003; Pladys et al., 2005; 

Khorram et al., 2007; Ham et al., 2009; Rozance et al., 2011; Liu et al., 2014; Rozance et al., 

2015); hence, it was conceivable that the capillarisation of the heart would also be adversely 

affected. However, previous findings in relation to the effects of growth restriction on 

fetal/newborn myocardial capillarisation (with studies conducted in three different animal 
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models) have been equivocal, with reports of increased capillary density (lamb fetuses, only 

the right ventricle was examined) (Botting et al., 2014), no change in capillary density (rat 

studies, whole heart) (Menendez-Castro et al., 2014), or capillary rarefaction (rabbit studies, 

with reduced capillary density in the left ventricle but not in the right ventricle) (Schipke et 

al., 2017).  

Given that the temporal and spatial development of the coronary vasculature in the rat 

heart is relatively well described (Ratajska and Fiejka, 1999; Ratajska et al., 2003), the rat 

was considered a good model to determine the impact of late gestational uteroplacental 

insufficiency on the developing heart. Importantly, we found no adverse effects on capillary 

density or capillary diffusion radius within the myocardium of Restricted rat offspring at 

postnatal day 1, thus suggesting that the overall blood supply to the cardiac muscle was not 

compromised. Using our methodological approach where the whole heart was embedded, we 

could not separately examine capillarisation in the right and left ventricles. Our findings are 

in accordance with the previous study conducted in rats at the same time point, where no 

effects on myocardial capillary density were observed in the hearts of male rat pups at 

postnatal day 1 when growth restriction had been induced by maternal low protein diet (LPD) 

throughout pregnancy (Menendez-Castro et al., 2014). Taken together, the combined findings 

in these rat models suggest that whether growth restriction is induced over a chronic time 

course, due to maternal malnutrition (common cause of IUGR in developing countries) or late 

in gestation due to uteroplacental insufficiency (common cause of IUGR in developed 

countries), the density of myocardial capillaries remains unchanged, with capillary growth 

directly proportional to heart size. Our findings are also supported by that of Wang et al. 
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(2015), who reported a significant reduction in total capillary length in the left ventricle of 3 

week old growth-restricted lambs, which is consistent with their smaller ventricular volume.  

Whether capillary growth dictates heart size (and potentially body size) or vice versa 

could not be determined in these studies. Indeed, the reciprocal relationship between 

myocardial angiogenesis and cardiac growth has previously been highlighted in experimental 

studies utilising a transgenic mouse model with regulatable expression of the angiogenic 

growth factor PR39 in the cardiomyocytes. In that model, an increase in endothelial cell mass 

in the developing heart was shown to drive an increase in cardiac size in the absence of 

hemodynamic or any other known hypertrophic stimulus (Tirziu et al., 2007). Tomanek et al. 

(1999) has also previously shown in an embryonic chicken model that the level of capillary 

growth remains proportional to cardiac growth in the developing heart when there is either an 

increase or decrease in cardiac mass, which further supports our findings of proportional 

heart size and capillary length in all offspring. 

The long-term impact of growth restriction on myocardial capillary density has, to our 

knowledge, only been investigated in maternal LPD rat models, in the absence of postnatal 

catch-up growth and cardiac hypertrophy. Menendez-Castro et al. (2014) reported no effect 

on myocardial vessel density in LPD rats at PN1, however a significant increase in density 

was evident at 10 weeks of age. Conversely, we have shown that total myocardial capillary 

length and surface area, and density, is unaffected in growth restricted (LPD) rats at 24 weeks 

of age (Lim et al., 2006). Further longitudinal studies are therefore required to fully assess the 

long-term impact of growth restriction on myocardial capillarisation. Indeed, with ageing the 

capacity for myocardial angiogenesis is known to diminish (Rakusan et al., 1992; Flanagan et 
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al., 1994; Hudlicka and Brown, 1996; Edelberg et al., 2002). As such, the smaller coronary 

vascular tree in the growth restricted heart at the beginning of life (with significantly reduced 

overall capillary length) may not be able to adequately support hypertrophic growth of the 

heart in later life, particularly in cases where physiological or pathological cardiac 

hypertrophy develops (as we have previously reported in this uteroplacental insufficiency 

model (Wlodek et al., 2008; Wadley et al., 2016)). It is therefore conceivable that the heart 

may not be able to undergo sufficient angiogenesis to maintain capillary density, which 

would therefore adversely impact myocardial blood supply. This would provide a plausible 

explanation for the increased risk of ischemic heart disease in adults born growth restricted 

(Barker et al., 1989; Eriksson et al., 1999; Huxley et al., 2007; Andersen et al., 2010), 

especially when there is postnatal catch-up body growth (Eriksson et al., 1999; Andersen et 

al., 2010). This is an important area for future research. 

In conclusion, the findings of this study suggest that late gestational growth restriction 

does not adversely impact microvascular development in the myocardium, as there was no 

effect of growth restriction on the length density or diffusion radius of the myocardial 

capillaries after birth. Total myocardial capillary length, however, was significantly reduced 

in the growth restricted offspring. Further longitudinal studies are required to fully elucidate 

the long-term impact of growth restriction on the myocardial vasculature, particularly in 

cases of physiological and pathological hypertrophy. 
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FIGURE LEGENDS 

 

Figure 1: Representative image of isolectin-labelled capillaries in the rat myocardium at 

postnatal day 1, overlayed by an orthogonal grid (thin lines) and unbiased counting frame 

(thick lines). Capillary profiles within the unbiased counting frame, or touching the inclusion 

lines (dashed) were counted, whereas those on the exclusion lines of the frame (solid) were 

excluded. Any branches from a capillary profile were counted individually. Tiny dots not 

recognisable as a full capillary, and any large vessels, were excluded. Bar = 50 µm.  

 

Figure 2: Absolute heart volume (A) and heart volume relative to body weight (B) in Control 

(n=5 male and 4 female) and Restricted (n=6 male and 6 female) rat pups at postnatal day 1. 

Analysed by two-way ANOVA with the factors growth restriction (pRest), sex (pSex) and their 

interaction (pRest*Sex).  

 

Figure 3: Myocardial capillary diffusion radius (A) and capillary length density (B) in 

Control (n=5 male and 5 female) and Restricted (n=6 male and 6 female) rat pups at postnatal 
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day 1. Total capillary length (C) in Control (n=5 male and 4 female) and Restricted (n=6 

male and 6 female) rat pups at postnatal day 1. Analysed by two-way ANOVA with the 

factors growth restriction (pRest), sex (pSex) and their interaction (pRest*Sex).  
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